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On square-difference factor absorbing ideals of commutative rings
Ayman Badawi

Let R be a commutative ring with 1 not equal 0. A proper ideal I of R is a square-difference
factor absorbing ideal (sdf-absorbing ideal) of R if whenever a2 − b2 in I for nonzero a, b ∈ R,
then a+ b ∈ I or a− b ∈ I. In this paper, we introduce and investigate sdf-absorbing ideals.

Keywords: Commutative rings
General area of research: Algebra
IIIMT25-ID 1702
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Determination of some graph dimensions obtained from special
algebraic structures

Ahmet Sinan Çevik

Department of Mathematics, Faculty of Science, Selcuk University, Campus, 42130, Konya, Turkey; sinan.cevik@selcuk.edu.tr,
www.ahmetsinancevik.com

The determination of certain graph dimensions derived from specific structures is the objective
of this study. The graphs [8] consider in this study will be simple and connected.
In detail, the main purpose of this talk is to partially answer the open problem “characterizing
all graphs having infinite multiset dimensions” via the graphs obtained from special minimal
(while inefficient or not) monoid presentations.
For the algebraic part of this study, we may refer [1,2]. On the other hand, the whole re-
quested details such as variants of definitions and their properties etc. about the special graph
dimensions can be found, for instance, in [5-7,9-13]
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Generalized bi-skew Lie (Jordan)-type Derivations on Algebras
Mohammad Ashraf

Professor (Retd.),Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India; mashraf80@gmail.com

Let A be a ∗-algebra over a commutative unital ring R. An R-linear
mapping δ : A → A is said to be a ∗-derivation if δ(xy) = δ(x)y + xδ(y) and δ(x∗) = δ(x)∗

hold for all x, y ∈ A. Let [x, y]∗∗ = xy∗ − yx∗ denote the bi-skew Lie product of x, y ∈ A.
For any x1, x2, . . . , xn ∈ A and integer n ≥ 2, define p1(x1) = x1, p2(x1, x2) = [x1, x2]∗∗ and
pn(x1, x2, . . . , xn) = [pn−1(x1, x2, . . . , xn−1), xn]∗∗. For integer n ≥ 2, the polynomial

pn(x1, x2, . . . , xn)

is called the bi-skew Lie n-product of elements x1, x2, . . . , xn ∈ A. An R-linear mapping L :
A → A is said to be a bi-skew Lie n-derivation if

L(pn(x1, . . . , xn)) =
n∑
i=1

pn(x1, . . . , xi−1,L(xi), xi+1, . . . , xn)

holds for all x1, x2, . . . , xn ∈ A. Assume that GL : A → A is an R-linear mapping and L
is a bi-skew Lie n-derivation on A. Then GL is called a generalized bi-skew Lie n-derivation
with associated bi-skew the Lie n-derivation L if GL(pn(x1, . . . , xn)) = pn(GL(x1), x2, . . . , xn) +∑n

i=2 pn(x1, . . . , xi−1,L(xi), xi+1, . . . , xn) holds for all
x1, x2, . . . , xn ∈ A. In the above definitions, if we replace the bi-skew Lie product [x, y]∗∗ =
xy∗ − yx∗ by the bi-skew Jordan product x ◦ y = xy∗ + yx∗, then the mappings L and GL
are known as a bi-skew Jordan n-derivation and a generalized bi-skew Jordan n-derivation,
respectively.
Determining the Lie (Jordan) structure of a ∗-algebra is one of the most important topics in
algebras and has been studied extensively by many authors (see [1-4] and references therein).
Kong and Zhang, in [5] proved that every nonlinear bi-skew Lie 2-derivation on a factor von
Neumann algebra A with dim(A) ≥ 2 is an additive ∗-derivation. The structure of generalized
bi-skew Jordan n-derivations and some related mappings have been studied in [3]. In the
present talk, the afore-mentioned developments will be discussed in details together with some
potential future research problems in this direction.

References

[1] M. Ashraf, M. S. Akhter and M. A. Ansari, Nonlinear bi-skew Lie-type derivations on factor
von Neumann algberas, Comm. Algebra 50(11) (2022), 4766–4780.
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The primeness of noncommutative polynomials on prime rings
M. Tamer Koşan

Faculty Sciences, Department of Mathematics, Gazi University, Ankara, Turkey; mtamerkosan@gazi.edu.tr, tkosan@gmail.com

This talk is based on the paper [4] with same title which appeared in Journal Algebra and
Applications , May 2024.
Throughout this presentation, rings R are always associative but are not necessarily with unity.
We let Z(R) denote the center of R. For a, b ∈ R, let [a, b] := ab− ba, the additive commutator
of a and b. Given additive subgroups A,B of R, we denote AB (respectively, [A,B]) the additive
subgroup of R generated by all elements ab (respectively, [a, b]) for a ∈ A and b ∈ B.
Let R be an algebra over K, where K is a unital commutative ring. By a polynomial
f(X1, . . . , Xt), we always mean that f(X1, . . . , Xt) is a polynomial over K in noncommuta-
tive variables X1, . . . , Xt and it has zero constant term. A polynomial f(X1, . . . , Xt)) over K
is called a polynomial identity (PI) for R if f(x1, . . . , xt) = 0 for all xi ∈ R. The polynomial
f(X1, . . . , Xt) is called central-valued on R if f(x1, . . . , xt) ∈ Z(R) for all x1, . . . , xt ∈ R. Given
an additive subgroup A of R, let f(A) denote the additive subgroup of R generated by all
elements f(x1, . . . , xt) for all x1, . . . , xt ∈ A.
We first discuss the following observation which gives the primeness of non-central polynomials
on algebras. Precisely,

Theorem A: Let R be an algebra over K, and let f(X1, . . . , Xt) be a noncommutative poly-
nomial over K, which is not central-valued on R. Then the following are equivalent:
(i) R is a prime ring;
(ii) Given a, b ∈ R, if af(x1, . . . , xt)b = 0 for all xi ∈ R then either a = 0 or b = 0.
Roughly speaking, Theorem A means that a polynomial f(X1, . . . , Xt) is “prime” if and only if
its image (as a function on n copies of R) is “prime”.
In a recent paper [3], Calareanu-Lee-Matczuk studied the notion of X-primeness of rings (see
also [2] for unit-semiprime rings). Let R be a ring with a subset X. The ring R is called
X-prime if, for a, b ∈ R, aXb = 0 implies that either a = 0 or b = 0. Clearly, every X-prime
ring is itself prime. From the view of point, we can restate Theorem A as follows.

Theorem B: Let R be an algebra over K, and let f(X1, . . . , Xt) be a polynomial over K,
which is not central-valued on R. Then R is a prime ring iff it is f(R)-prime.
Theorem C: Let R be an algebra, ρ a right ideal of R, and f(X1, . . . , Xt) be a polynomial.
Then R is f(ρ)-prime iff it is f(R)-prime and AnnlR(ρ) = 0.

Here, we remark that Theorem C is the one-sided version of Theorem B.
Let R be a prime ring, and let U denote the maximal right ring of quotients of R. The center
of U , denoted by C, is called the extended centroid of R. It is well known that U is also a
prime ring and C is a field (see [1] for details). Also, R is called centrally closed if R = RC. In
particular, RC is always a centrally closed prime algebra over C.
Basing on Theorem A, we prove its one-sided version.
Theorem D: Let R be a prime ring, ρ a right ideal of R, f(X1, . . . , Xt) a noncommutative
polynomial over C, which is not a PI for ρ, and a, b ∈ R \ {0}. Then af(x1, . . . , xt)b = 0 for all
xi ∈ ρ if and only if one of the following hold:
(i) aρ = 0;
(ii) ρC = eRC for some idempotent e ∈ RC and b ∈ ρC such that either f(ρ)ρ = 0 or
f(X1, . . . , Xt) is central-valued on eRCe and ab = 0.
Higher commutators of a given ring due to Lanski [5] are defined as follows.
Definition:

6
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1. R is a higher commutator of R with length 1.

2. If U and V higher commutators of R with lengths s, t, respectively, then [U, V ] is also a
higher commutator of R with length s+ t.

3. Every higher commutator of R is obtained from (1) and (2) inductively.

Given a higher commutator H of R, the weight of H, denoted by w(R), is defined as the
minimal length of its all possible expressions.
If H = [R, [R,R]], we can choose f = [X1, [X2, X3]] such that f(R) = H. Clearly, it is true for
arbitrary higher commutator of R.
In the rest of the talk, we will apply Theorem D to the case that the additive subgroup of R
generated by the image of f(X1, . . . , Xt) on a right ideal is a higher commutator. Precisely, we
will focus on the following problem.
Problem: Let R be a prime ring, ρ a nonzero right ideal of R, H a higher commutator of ρ
and a, b ∈ R. Characterize a, b, and H if aHb = 0.
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On Certain Additive Maps and the Subrings They Generate in a
Prime Ring

Vincenzo De Filippis

Department of Engineering, University of Messina, Italy; defilippis@unime.it

Let R be a ring and f an additive map of R. How does one measure the size of f(R)? One
way is to look at how large f(R), the subring generated by f(R), turns out to be. A subring
of a ring is considered ’large’ if it contains an ideal (right, left, or two-sided) of the ring itself.
In this presentation, we aim to analyze the subrings generated by appropriate sets constructed
using some of the most commonly used additive maps, working in a context related to prime
rings of characteristic different from 2. We will reference some of the main results from the
literature, present a few new ones, and provide some ideas for future research, suggesting some
open problems to address.

Keywords: Prime rings, Generalized derivations, Generalized Skew derivations, Generalized
homoderivations
General area of research: Noncommutative Ring Theory
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The First General Zagreb Index of a Graph for the Ring of Integers
Modulo pkqr

Nor Haniza Sarmin1, Ghazali Semil Ismail1,2, Nur Idayu Alimon2

1Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia;
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2Mathematical Sciences Studies, College of Computing, Informatics and Mathematics, Universiti Teknologi MARA Johor Branch,
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A topological index, also known as a connectedness index, is a numerical descriptor derived
from the molecular graph of a chemical compound, providing an accurate representation of its
topological structure. Topological indices are classified based on degree, distance, eigenvalue,
matching, and mixed, and in this article, we focus on calculating and analysing degree-based
topological index, namely the first general Zagreb index. The first general Zagreb index of a
graph is defined as the sum of the degrees of all vertices in the graph, each raised to the power
of δ, where δ is any nonzero real number. Suppose we have a simple graph with the set of
vertices and edges. The zero divisor graph of a commutative ring is a graph whose vertices
correspond to the zero divisors of the ring. In this graph, two distinct vertices are adjacent
if and only if their product is zero. In this research, the general formulas of the first general
Zagreb index of the zero divisor graph for the ring of integers modulo pkqr, where p, q and r
are distinct primes and k ∈ N, for cases δ = 1, 2 and 3 are determined. Some examples are
provided to demonstrate the results.

Introduction and Preliminaries
Topological indices, numerical parameters derived from the graph representation of a molecule,
have become indispensable tools in cheminformatics and quantitative structure-property rela-
tionship studies, offering a succinct yet powerful means of characterising molecular structures
and predicting their physicochemical properties [1]. The concept of a zero divisor graph pro-
vides a valuable bridge between ring theory and graph theory by allowing algebraic properties
to be studied through graphical structures. In recent years, a substantial body of research has
focused on graph-theoretical topological indices, including studies specifically addressing zero
divisor graphs of commutative rings. In this section, we provide definitions of the zero divisor
graph of a commutative ring and the first general Zagreb index.

Definition 1. [2] The zero divisor graph of a commutative ring R, denoted by Γ (R), is the
undirected graph with vertex set Z(R) and two distinct vertices u and v are adjacent if uv = 0.

Following the introduction of zero divisor graphs, extensive research has been conducted on
their structural and combinatorial properties within the context of commutative rings, including
studies on upper dimension and bases [3], metric dimension [4], eigenvalues [5], and other graph
parameters [6].

Definition 2. [7] The first general Zagreb index,

R0
δ =

∑
u∈V (Γ)

deg (u)δ ,

where δ is an arbitrary real number.

For recent studies on the computation of topological indices for the total graph and the zero
divisor graph of a commutative ring, readers are referred to [8–11]. Notably, in 2023, Mondal
et al. [12] computed several degree-distance-based and distance-based topological indices for
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the zero divisor graphs of the ring Zpk . Throughout this paper, we derive the general formulas
of the first general Zagreb index of the zero divisor graph for the ring of integers modulo pkqr,
where p, q and r are distinct primes and k ∈ N. The computations are carried out for the cases
δ = 1, 2 and 3.

Main Results and Discussion
The following propositions are presented for the set of all zero divisors and the number of zero
divisors in the commutative ring Zpkqr.

Proposition 3. The set of all zero divisors in the ring Zpkqr is given by Z
(
Zpkqr

)
= {p, 2p, 3p, . . . ,

p
(
pk−1qr − 1

)
} ∪ {q, 2q, 3q, . . . , q

(
pkr − 1

)
} ∪ {r, 2r, 3r, 4r, . . . , r

(
pkq − 1

)
}.

Proposition 4. The number of zero divisors in the commutative ring Zpkqr is given by
∣∣Z (Zpkqr)∣∣ =

pk−1 (qr − r − q + 1) + pk (r + q − 1)− 1.

Initially, the degree of a vertex in the zero divisor graph for the ring Zpkqr is analysed through
seven distinct cases, as outlined in Propositions 2.3 to 2.9, presented in the following sections.

Proposition 5. Let a ∈ Z
(
Zpkqr

)
with gcd

(
a, pkqr

)
= pi for i = 1, 2, 3, . . . , k. Then, deg(a) =

pi − 1.

Proposition 6. Let a ∈ Z
(
Zpkqr

)
with gcd

(
a, pkqr

)
= q. Then, deg(a) = q − 1.

Proposition 7. Let a ∈ Z
(
Zpkqr

)
with gcd

(
a, pkqr

)
= r. Then, deg(a) = r − 1.

Proposition 8. Let a ∈ Z
(
Zpkqr

)
with gcd

(
a, pkqr

)
= piq for i = 1, 2, 3, . . . , k. Then, deg(a) =

piq − 1.

Proposition 9. Let a ∈ Z
(
Zpkqr

)
with gcd

(
a, pkqr

)
= pir for i = 1, 2, 3, . . . , k. Then, deg(a) =

pir − 1.

Proposition 10. Let a ∈ Z
(
Zpkqr

)
with gcd

(
a, pkqr

)
= qr. Then, deg(a) = qr − 1.

Proposition 11. Let a ∈ Z
(
Zpkqr

)
with gcd

(
a, pkqr

)
= piqr. Then,

deg(a) =

{
piqr − 1, for i ≤

⌊
k−1

2

⌋
,

piqr − 2, for i >
⌊
k−1

2

⌋
.

In the second procedure, the number of vertices in the zero divisor graph for the ring Zpkqr
corresponding to each degree is categorised into seven cases, as detailed in Propositions 2.10
tO 2.16.

Proposition 12. Let a ∈ Z
(
Zpkqr

)
where gcd

(
a, pkqr

)
= pi. Then,

∣∣V (Γ (Zpkqr))∣∣ =

{ (
pk−i − pk−(i+1)

)
(q − 1) (r − 1) , for 1 ≤ i ≤ k − 1,

pk−i (q − 1) (r − 1) , for i = k.

Proposition 13. Let a ∈ Z
(
Zpkqr

)
where gcd

(
a, pkqr

)
= q. Then,∣∣V (Γ (Zpkqr))∣∣ =

(
pk − pk−1

)
(r − 1) .

Proposition 14. Let a ∈ Z
(
Zpkqr

)
where gcd

(
a, pkqr

)
= r. Then,∣∣V (Γ (Zpkqr))∣∣ =

(
pk − pk−1

)
(q − 1) .

10



The Joint IIIMT-Algebra Forum Conference 2025
June 24-26, 2025, Karaman, Turkiye

Proposition 15. Let a ∈ Z
(
Zpkqr

)
where gcd

(
a, pkqr

)
= piq. Then,

∣∣V (Γ (Zpkqr))∣∣ =

{ (
pk−i − pk−(i+1)

)
(r − 1) , for 1 ≤ i ≤ k − 1,

pk−i (r − 1) , for i = k.

Proposition 16. Let a ∈ Z
(
Zpkqr

)
where gcd

(
a, pkqr

)
= pir. Then,

∣∣V (Γ (Zpkqr))∣∣ =

{ (
pk−i − pk−(i+1)

)
(q − 1) , for 1 ≤ i ≤ k − 1,

pk−i (q − 1) , for i = k.

Proposition 17. Let a ∈ Z
(
Zpkqr

)
where gcd

(
a, pkqr

)
= qr. Then,∣∣V (Γ (Zpkqr))∣∣ =

(
pk − pk−1

)
.

Proposition 18. Let a ∈ Z
(
Zpkqr

)
where gcd

(
a, pkqr

)
= piqr. Then∣∣V (Γ (Zpkqr))∣∣ =

(
pk−i − pk−(i+1)

)
for 1 ≤ i ≤ k − 1.

Lastly, the general formulas of the first general Zagreb index of the zero divisor graph for
the ring Zpkqr, denoted as R0

δ

(
Γ
(
Zpkqr

))
when δ = 1, 2 and 3 are determined. To obtain the

general formulas, Propositions 2.1 to 2.16 are systematically incorporated into the definition of
the topological index.

Theorem 19. The first general Zagreb index of the zero divisor graph for the ring Zpkqr when
δ = 1,

R0
1

(
Γ
(
Zpkqr

))
= (q − 1) (r − 1)

(
k
(
pk − pk−1

)
+ 2pk−1 (p− 1)

)
+ (r − 1)

(
q
(
pk − pk−1

)
(k − 1)− pk−1 + pkq

)
+ (q − 1)

(
r
(
pk − pk−1

)
(k − 1)− pk−1 + pkr

)
+
(
pk − pk−1

)(
qrk − 1−

(
pk−1 − pb

k−1
2 c

pb
3(k−1)

2 c (p− 1)

))
− pk−1 + 1.

Theorem 20. The first general Zagreb index of the zero divisor graph for the ring Zpkqr when
δ = 2,

R0
2

(
Γ
(
Zpkqr

))
= (q − 1)(r − 1)

[
pk−1(pk − p)− 2(pk − pk−1)(k − 1) + pk−1 − 1

+ (pk − 1)2 + pk−1(q + r − 2)
]

+ (r − 1)
[
pk−1q2(pk − p)

− 2q(pk − pk−1)(k − 1) + pk−1 − 1 + (pkq − 1)2
]

+ (q − 1)
[
pk−1r2(pk − p)− 2r(pk − pk−1)(k − 1) + pk−1 − 1

+ (pkr − 1)2
]

+ (pk − pk−1)
[
(qr − 1)2 + q2r2

(
pk − p
p− 1

)

− 2qr(k − 1) +
pk−1 − 1

pk − pk−1
+

3
(
pk−1 − pb

k−1
2 c
)

pb
3(k−1)

2 c(p− 1)
− 2qr

⌈
k − 1

2

⌉ ]
.
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Theorem 21. The first general Zagreb index of the zero divisor graph for the ring Zpkqr when
δ = 3,

R0
3(Γ(Zpkqr)) = (q − 1)(r − 1)

[
pk+1(p2(k−1) − 1)

p+ 1
− 3pk−1(pk − p)

+ 3(pk − pk−1)(k − 1)− pk−1 + 1 + (pk − 1)3 + pk−1(p− 1)(q − 1)2

+pk−1(p− 1)(r − 1)2
]

+ (r − 1)

[
pk+1q3(p2(k−1) − 1)

p+ 1
− 3pk−1q2(pk − p)

+ 3q(pk − pk−1)(k − 1)− pk−1 + 1 + (pkq − 1)3 ]

+ (q − 1)

[
pk+1r3(p2(k−1) − 1)

p+ 1
− 3pk−1r2(pk − p)

+ 3r(pk − pk−1)(k − 1)− pk−1 + 1 + (pkr − 1)3 ]

+ (pk − pk−1)

[
(qr − 1)3 + p2q3r3

(
p2(k−1) − 1

p2 − 1

)
− 3q2r2

(
pk − p
p− 1

)

+ 3qr(k − 1)− pk−1 − 1

pk − pk−1
−

3pb
k+1
2
cq2r2

(
pd

k−1
2
e − 1

)
p− 1

−
7
(
pk−1 − pb k−1

2
c
)

pb
3(k−1)

2
c(p− 1)

+ 9qr

⌈
k − 1

2

⌉ .
Conclusion
In this paper, several properties such as the set of vertices representing zero divisors, the degree
of each vertex and the number of vertices of the zero divisor graph for the ring of integers
modulo pkqr are determined. Based on these structural characteristics, general formulas for
the first general Zagreb index of the graph are successfully established.
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Quiver Representations in Neural Network and
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Neural networks, consisting of interconnected layers of neurons, have found widespread ap-
plications in various domains, such as image recognition, stock market prediction, and speech
recognition. However, understanding the structure and characteristics of neural networks can be
challenging. In this talk, we will explore how quiver representations over a valuable framework
for describing neural networks.
Topological data analysis (TDA) is a rapidly evolving field that employs topological methods
to analyze complex datasets. Its objective is to reveal the underlying structure of data by iden-
tifying topological features such as connected components and voids. Quiver representations
have emerged as a promising approach within TDA, leveraging directed graphs to encode in-
formation about a system. Their effectiveness in representing topological structures, including
persistence diagrams, has increased popularity.
This talk will also provide an overview of quiver representations in the context of topological
data analysis. By understanding the role and significance of quiver representations, we can
enhance our understanding of neural networks and apply this knowledge to various domains
where these networks are utilized.

Keywords: Topological Data Analysis
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The Zariski Closure Conjecture for exponentially Lie groups
Ali Baklouti
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We will begin by defining the Zariski Closure Conjecture for coadjoint orbits of exponentially
solvable Lie groups, examining some solved cases, and addressing the ongoing challenges in fully
resolving the conjecture. I will then introduce new approaches to exploring the relationship
between generating families of primitive ideals and the set of polynomials that vanish on the
associated coadjoint orbits, ultimately aiming to advance toward a solution to the conjecture.

Keywords: Zariski Closure Conjectur
General area of research: Mathematics
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Chain and Distributive Coalgebras
Christian Lomp
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In this talk we will see that coalgebras whose lattice of right coideals is distributive are co-
products of coalgebras whose lattice of right coideals is a chain. Those chain coalgebras are
characterized as finite duals of Noetherian chain rings whose residue field is a finite dimensional
division algebra over the base field. Infinite dimensional chain coalgebras are finite duals of left
Noetherian chain domains. Given any finite dimensional division algebra D and D-bimodule
structure on D, we construct a chain coalgebra as a cotensor coalgebra. Moreover if D is sepa-
rable over the base field, every chain coalgebra of type D can be embedded in such a cotensor
coalgebra. As a consequence, cotensor coalgebras arising in this way are the only infinite di-
mensional chain coalgebras over perfect fields. Finite duals of power series rings with coeficients
in a finite dimensional division algebra D are further examples of chain coalgebras, which also
can be seen as tensor products of D∗, and the divided power coalgebra and can be realized as
the generalized path coalgebra of a loop. If D is a central division algebra, any chain coalgebra
is a subcoalgebra of the finite dual of D[[x]]. (This talk is based on a joined work with Alveri
Sant’ana)
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On certain Identities with automorphisms in prime and semiprime
rings
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Let R be a prime ring with center Z and maximal right ring of quotients Q = Qmr(R). Note
that Q is also a prime ring and the center C of Q, which is called the extended centroid of R,
is a field. Moreover, Z ⊆ C. It is well known that any automorphism of R can be uniquely
extended to an automorphism of Q. An automorphism α of R is called Q-inner if there exists an
invertible element g ∈ Q such that α(x) = gxg−1 for all x ∈ R. Otherwise, α is called Q-outer.
We denote by G the group of all automorphisms of R and by Ai the group consisting of all
Q-inner automorphisms of R. Recall that a subset A of G is said to be independent (modulo Ai)
if for any a1, a2 ∈ A, a1a

−1
2 ∈ Ai implies a1 = a2. For instance, if a is an outer automorphism

of R, then 1 and a are independent (modulo Ai). In the year 2000, Carini and De Filippis [1]
studied the power-centralizing derivations on noncentral Lie ideals of prime rings. They proved
that, if char(R) 6= 2 and [d(x), x]n ∈ Z for all x in a non-central Lie ideal L of R, then R
satisfies s4, the standard identity in four variables. Recently, Wang [2] obtained similar result
for automorphisms of prime rings. To be more specific, Wang proved the following: Let R be a
prime ring with center Z, L be a non-central Lie ideal of R and α be a nontrivial automorphism
of R such that [α(u), u]n ∈ Z for all u ∈ L. If either char(R) > n or char(R) = 0, then R
satisfies s4.
On the other hand, the property xn = x has been among the favorites of many ring theorists
over the last many decades since Jacobson [3] first studied the commutativity of rings satisfying
this condition in order to generalize the classical Wedderburn theorem. Further, Bell and Ligh
[4] obtained a direct sum decomposition of a ring satisfying the property xy = (xy)2f(x, y),
where f(x, y) ∈ Z < x, x >, the ring of polynomials in two non-commuting indeterminates.
Later, Ashraf [5] established a decomposition theorem for rings satisfying yx = xmf(xy)xn or
xy = xmf(xy)xn, where m,n are non-negative integers and f(x) ∈ x2Z[x], which allows us
to determine the commutativity of R. Now in this perspective and inspired by Wang works,
in the present talk we discussed the action of automorphisms on Lie ideals of prime ring and
semiprime rings.
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A study on the hulls of constacyclic codes over Rm,q
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The hull of a linear code is the intersection of the code with its dual. Assmus Jr. and Key [1]
introduced the concept of the hull in 1990. It has a crucial role in determining the complexity
of the algorithms used to check the permutation equivalence of two linear codes or determine
the automorphism group of a linear code. Further, good entanglement-assisted quantum error-
correcting codes are obtained from the hulls of linear codes. Interestingly, the linear codes with
trivial hulls are called the linear complementary dual (LCD) codes that are used to protect
crypto-systems. All these applications of hulls have intrigued researchers to study the hulls
and their properties extensively. In this talk, we consider the ring Rm,q = Fq [u]

〈um−u〉 and define
the Galois inner product over this ring. Then, we study the Galois duals of constacyclic
codes over the ring and propose a formula for the Galois hull dimensions of constacyclic codes.
Furthermore, we present some results on constacyclic codes over Rm,q to be Galois LCD and
give a few examples of Galois LCD codes.
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Jordan Derivations on Modules over Associative Rings: Equivalence,
Structure, and Applications

Indah Emilia Wijayanti

Department of Mathematics Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia;
ind_wijayanti@ugm.ac.id

This paper investigates the structure and properties of Jordan derivations on modules over
associative rings. A Jordan derivation is a linear map that satisfies the Leibniz rule for the
Jordan product a ◦ b = ab+ ba, generalizing the notion of classical derivations. We explore the
relationship between Jordan derivations and ordinary derivations in the context of modules,
focusing on conditions under which these two classes of maps coincide. By leveraging the
algebraic structure of modules and their underlying rings, we establish sufficient criteria for
a Jordan derivation to be a derivation, particularly in the setting of prime and semiprime
modules. Key results include the demonstration that, under certain faithfulness and torsion-
free conditions, every Jordan derivation on a module reduces to a derivation.
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Quasi-Duo Modules
A. Çiğdem Özcan
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A ring R is said to be a left quasi-duo ring if its maximal left ideals are two-sided, or equivalently
every maximal left ideal is fully invariant in R. The concept of quasi-duo modules arises as
a natural generalization of quasi-duo rings and has been of interest to many authors in the
literature. In this article, quasi-duo modules are investigated in detail and their relations with
some other classes of modules are examined.
Joint work with Mauricio Gabriel Medina Bárcenas
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Additives mappings on prime and semiprime rings: a survey
Abdellah Mamouni

Moulay Ismail University, Meknes Morocco; a.mamouni.fste@gmail.com

The purpose of this work is to prove some results concerning some Jordan derivation and left
Jordan derivation on prime and semi-prime rings. Moreover, we provide examples to show that
the assumed restrictions cannot be relaxed.
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Coding Theory: Past, Present, and Future
Nuh Aydın

Department of Mathematics and Statistics, Kenyon College, Gambier, OH, USA; aydinn@kenyon.edu

Coding theory is among the most elegant and useful applications of algebra. This relatively
young discipline benefits much from algebraic tools and generates interesting problems in pure
algebra. In this talk, we give a brief introduction to coding theory including its history, current
and future research questions.
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General area of research: Algebra
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p-adic integrals involving special numbers on p-adic integers with
their ideals and additive cosets

Yilmaz Simsek

Department of Mathematics, Faculty of Science University of Akdeniz, Antalya-Turkey, ysimsek@akdeniz.edu.tr

The aim of this survey is to analyze the results given in both "[8] and [9]", which include
new p-adic integral formulas in recent years, and to give new formulas and relations related
to this subject. In addition to these, it is to give their applications and to demonstrate their
current usage, not only in the scope of measure theorem, distribution theory involving the
Haar distribution, and p-adic integrals, but also by blending them with algebraic structures
and certain family of p-adic zeta functions.

Introduction
Let N, Z, Q, R and C denote the set of natural numbers, the set of integers, the set of rational
numbers, the set of real numbers and the set of complex numbers, respectively. Additionally,
let N0 = N∪{0}. Here we assume that p be an odd prime number. For m ∈ N, definition of
ordp(m): ordp(m) is the greatest integer k (k ∈ N0) such that pk divides m in Z. For m = 0,
assuming that ordp(m) = ∞. For x ∈ Q with x = a

b
(a, b ∈ Z), than ordp(x) = ordp(

a
b
) =

ordp(a)− ordp(b). Let |.|p is a map on Q. |.|p is a norm over Q. |.|p is defined by

|x|p =

{
p−ordp(x) if x 6= 0,

0 if x = 0.

In order to explain any x ∈ Q with form x = py x1
x2

where y, x1, x2 ∈ Z and x1 and x2 are not
divisible by p, one has ordp(x) = y and |x|p = p−y (cf. [1-12]).
The set Qp equipped with this norm |x|p is a topological completion of of set Q. Cp is the
field of p-adic completion of algebraic closure of Qp. Zp is topological closure of Z. Zp is a
set of p-adic integers. With the aid of the norm |x|p, Zp is defined by not only as follows:

Zp =
{
x ∈ Qp : |x|p ≤ 1

}
, but also by the formal power series: If x ∈ Zp, then x =

∞∑
j=0

ajp
j

where 0 ≤ aj < p with j ∈ N0 (cf. [1-12]).
Here we assume that f : Zp → Cp is a uniformly differential function at a point a ∈ Zp.
The form of additive cosets of Zp are given by means of the following sets: pZp =

{
x ∈ Zp : |x|p < 1

}
,

which is a maximal ideal of Zp . For j ∈ {0, 1, . . . , pn − 1}, all additive cosets of Zp are given by
pZp, 1+pZp, · · · , p−1+pZp, where the set j+pZp is given by j+pnZp =

{
x ∈ Zp : |x− j|p < p1−n

}
and Zp = ∪p−1

j=0 (j + pZp) (cf. [1-12]).
Every map µ from the set of intervals contained in X to Qp for which

µ (x+ pnZp) =

p−1∑
j=0

µ
(
x+ jpn + pn+1Zp

)
whenever x + pnZp ⊂ X, exists uniquely to a p-adic distribution on X. There are many
examples for istributions. The firs important example is the Haar distribution, defined by
µHaar

(
x+ pNZp

)
:= µ1 (x) = µ1

(
x+ pNZp

)
= 1

pN
(cf. [1-12]).

Observe that, for a compact-open subset X of Qp, a p-adic distribution µ on X is a Qp-linear
vector space homomorphism from the Qp-vector space of locally constant functions on X to Qp

(cf. [7]).
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Let K be a field with a complete valuation and C1(Zp → K) be a set of functions which have
continuous derivative (see, for detail, [7]).
The Volkenborn integral (or p-adic bosonic integral) on Zp is defined by∫

Zp

f (x) dµ1 (x) = lim
N→∞

1

pN

pN−1∑
x=0

f (x) , (1)

where
µ1 (x) =

1

pN

(cf. [1-12]).
Some properties of the Volkenborn integral (bosonic p-adic integral) are given as follows:

By applying the Volkenborn integral to the function f (x) =
∞∑
n=0

an
(
x
n

)
∈ C1(Zp → K), one has

the following well-known formula:∫
Zp

f (x) dµ1 (x) =
∞∑
n=0

(−1)n

n+ 1
an,

(cf. [7, p. 168-Proposition 55.3]).
Schikhof [7] gave the following integral formula for the Volkenborn integral:∫

Zp

f(x+ 1)dµ1 (x) =

∫
Zp

f(x)dµ1 (x) + f ′(0), (2)

where f ′(0) = f ′(x) |x=0 = d
dx
{f(x)} |x=0 . By applying the Volkenborn integral to the following

analytic function: f : Zp → K with f (x) =
∞∑
n=0

anx
n, we have

∫
Zp

∞∑
n=0

anx
ndµ1 (x) =

∞∑
n=0

an

∫
Zp

xndµ1 (x) =
∞∑
n=0

anBn,

where Bn denotes the Bernoulli polynomials (cf. [1-12]).
We now study on the well-known properties of the multiplicative group of the primitive pNth
roots of unity in C∗p = Cp\ {0}.
Let CpN denote the multiplicative group of the primitive pNth roots of unity in C∗p = Cp\ {0}.
The set Tp is defined by

Tp =
{
ξ ∈ Cp : ξp

N

= 1, N ∈ N0

}
= ∪

N≥0
CpN

In [2], [?], [9], [12] and also the references cited in each of these earlier works, the p-adic
Pontrjagin duality, the dual of Zp is Tp = Cp∞ , the direct limit of cyclic groups CpN of order
pN with N ≥ 0, with the discrete topology. Tp accept a natural Zp-module structure which
can be written briefly as ξx for ξ ∈ Tp and x ∈ Zp. Tp are embedded discretely in Cp as the
multiplicative p-torsion subgroup. If ξ ∈ Tp, then

ϑξ : (Zp,+)→ (Cp, .)

is the locally constant character, x→ ξx, which is a locally analytic character if ξ ∈ {ξ ∈ Cp : ordp(ξ − 1) > 0}.
Consequently, it is well-known that ϑξ has a continuation to a continuous group homomorphism
from (Zp,+) to (Cp, .) see also [1].
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p-adic integral over subsets of Zp and Cp: Let f ∈ C1(Zp → K). p-adic integral over j+ pnZp,
the cosets of nZp:∫

j+pnZp

f(x)dµ1 (x) =

∫
pnZp

f(j + x)dµ1 (x) =
1

pn

∫
Zp

f(j + pnx)dµ1 (x) (3)

(cf. [7, p. 175]). For instance, ∫
j+pnZp

xmdµ1 (x) = pn(m−1)Bm

(
j

pn

)
(4)

(cf. [7, p. 175]). LetRp = Zp\pZp and f : Rp → Qp and a C1-function and also f(−x) = −f(x)
with x ∈ Rp. Thus

∫
Rp

f(x)dµ1 (x) = 0 (cf. [7, p. 175]). The p-adic zeta function ζp,j(s) is

defined on set Rp by ∫
Rp

xj
(
xp−1

)s
dµ1 (x) = (j + (p− 1)s) ζp,j(s), (5)

where |s|p < p
p−2
p−1 , s 6= − j

p−1
and j ∈ {0, 1, . . . , p− 2}, p 6= 2 (cf. [p. 187][7], [?]).

Substituting s = n (n ∈ N) into (5), one has

ζp,j(n) =
1

j + (p− 1)n

∫
Rp

xj+n(p−1)dµ1 (x) =
1

j + (p− 1)n
Bj+n(p−1) (6)

where n ∈ N and j ∈ N0 (cf. [p. 187][7], [?]).
By using same mathods those of [8] and [9], we give some new p-adic integral formulas involv-
ing generating functions for certain classes of special numbers and polynomials, the Bernoulli
numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers, the Com-
binatorial numbers and sum. By combining the following integral, on the (maximal) ideals and
also additive cosets of Zp, ∫

j+pnZp

f(x)dµ1 (x)

with distribution theory related to the Haar distribution and p-adic integrals, study on p-adic
zeta functions covering Bernoulli numbers.
Our future projects will be investigate applications results, which were given in [8], [9], and also
other references.
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The Generalized Hopfian Abelian Group in some Categories of
Abelian Groups
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A group G is called a generalized Hopfian group if, for every surjective endomorphism f , Ker(f)
is superfluous subgroup An abelian group A . In this paper We will characterize abelian group
in category of Algebraically Compact abelian group and in category of divisible abelian group.
We know that the p-component of generalized hopfian torsion abelian group is also generalized
hopfian, but this result isn’t true for any abelian group, for that we construct an generalized
Hopfian abelian group but its the p-component of A isn’t generalized Hopfian Hopfian abelian
group
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The construction of few-weight minimal linear codes over finite fields
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Linear codes in coding theory are of great importance in various fields such as cryptographic
systems, storage systems, and digital communication. In particular, few-weight minimal linear
codes provide secure communication and storage for systems requiring privacy such as secret
sharing schemes. In this work, we study the construction of few-weight minimal linear codes
over the odd characteristic finite fields. Firstly, we construct a new family of three-weight linear
codes by employing the defining set D01. Secondly, we introduce a new construction method
and obtain a new family of four-weight linear codes based on the defining set D0. We calculate
the Hamming weights and weight distributions of the obtained codes. Finally, we observe that
these obtained codes are minimal.
For a prime number p and a positive integer m, the finite field with elements pm is denoted by
Fpm . The extension field Fpm can be viewed as an m-dimensional vector space over Fp, denoted
by Fmp . The trace of α ∈ Fpm over Fp is defined as Trp

m

p (α) = α+αp +αp
2

+ · · ·+αp
m−1 , which

is denoted by Trm(α) for simplicity. For any set E, #E denotes the cardinality of E.
Let n and k be positive integers. A linear code C of length n and dimension k over Fp is a
k-dimensional linear subspace of Fnp , denoted by [n, k]p. Moreover, C is denoted by [n, k, d]p
if its minimum Hamming distance d is known. A linear code C is minimal if every nonzero
codeword c in C covers only the codewords jc for all j ∈ Fp.

Lemma 22 (Ashikhmin-Barg Condition). [1] Let C be a linear code over Fp and let wmin and
wmax represent, respectively, the minimum and maximum Hamming weights of C. Then, C is
minimal if p−1

p
< wmin

wmax
.

This work constructs new classes of three-weight and four-weight minimal linear codes. This
work is motivated by the recent works [2,3]. In 2023, Zhu et. al. [2] have defined the following
linear code

CD =
{
c(a,b) = (Trm(ayxt + bx))(x,y)∈D : (a, b) ∈ Fpm × Fpm

}
(7)

based on the defining set D for a positive integer t. The length of the code (7) is n = #D and
its dimension is k = 2m. In this work, as a defining set D, we select the following set

D01 =
{

(x, y) ∈ F?pm × Fpm : Trm(yxt+1) ∈ {0, 1}
}

for the code (7) and obtain a new class of three-weight linear code CD01 . Its minimality follows
from Lemma 22.
The parameters of the code CD01 are listed in the following theorem.

Theorem 23. Let m ≥ 2 be an integer. The code CD01 is a three-weight minimal linear code
over Fp with parameters [2p2m−1−2pm−1, 2m, pm−1(2pm−2pm−1−p+1)]. The Hamming weights
are listed in Table 1.

Hamming weight ω Frequency Aω
0 1

(p− 1)2p2m−2 (1
2
(p− 1)pm−1 + 1)(pm − 1)

pm−1(2pm − 2pm−1 − p+ 1) (pm − 1)pm−1

2pm−1(pm − pm−1 − 1) 1
2
(p− 1)pm−1(pm − 1)

Table 1: Hamming weights and their frequency in CD01
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In 2022, Cheng et. al. [3] have defined the following linear code

CD = {c(a,b,c) = (Trm(ax+ by + cz))(x,y,z)∈D : (a, b, c) ∈ F3
pm}. (8)

Motivated by the construction methods of (7) and (8), for an arbitrary positive integer t, we
define a new linear code

CD0 =
{
c(a,b,c) = (Trm(ayxt + bx+ cz))(x,y,z)∈D0 : (a, b, c) ∈ F3

pm

}
based on the set D0 =

{
(x, y, z) ∈ F?pm × Fpm × Fpm : Trm(yxt+1) + Trm(z) = 0

}
. The length

n = #D0 and dimension k = 3m. Thus, we obtain a new class of four-weight linear code CD0

whose minimality follows from Lemma 22.
The parameters of the code CD0 are listed in the following theorem.

Theorem 24. Let m ≥ 2 be an integer. Then, CD0 is a four-weight minimal linear code over
Fp with parameters [p2m−1(pm − 1), 3m, (p − 1)(p3m−2 − 2p2m−2)]. The Hamming weights are
listed in Table 2.

Hamming weight ω Frequency Aω
0 1

(p− 1)(pm − 1)p2m−2 2p2m − 2pm

(p− 1)p3m−2 pm − 1
(p− 1)(p3m−2 − 2p2m−2) (pm − 1)2pm−1

(p− 1)p3m−2 − (p− 2)p2m−2 (pm − 1)2pm−1(p− 1)

Table 2: Hamming weights and their frequency in CD0
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Co-commuting generalized derivations acting on Lie ideals in prime
rings

Basudeb Dhara

Department of Mathematics, Belda College, Belda, Paschim Medinipur, India; basu_dhara@yahoo.com

Let R be a prime ring with its Utumi ring of quotients U and extended centroid C. Suppose
that F,G and H are three generalized derivations of R and L is a noncentral Lie ideal of R
such that (

F (u)u− uG(u)
)
H(u) = 0

for all u ∈ L. If char (R) 6= 2, 3, then one of the following holds:

1. H = 0;

2. there exists a ∈ U such that F (x) = xa and G(x) = ax for all x ∈ R;

3. there exist p, q, c ∈ U and λ ∈ C such that F (x) = xp+ λx, G(x) = px+ xq, H(x) = cx
for all x ∈ R, with (λ− q)c = 0;

4. R satisfies s4 and one of the following holds:

(a) there exist a, p ∈ U and λ ∈ C such that F (x) = ax+xp+λx and G(x) = px+xa+λx
for all x ∈ R;

(b) there exist a, c, p, q ∈ U and λ ∈ C such that F (x) = ax+ xp+ λx, G(x) = px+ xq,
H(x) = cx for all x ∈ R with (a− q + λ)c = 0.

This work is supported by a grant from Science and Engineering Research Board (SERB), New
Delhi, India. Grant No. is MTR/2022/000568.
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ring, Lie ideal
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Computing the Sombor Index of Prime Ideal Sum Graph of Zn
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Algebraic graph theory is a significant field of mathematics that investigates the relationships
between different algebraic structures and the numerous features that graphs display. Topo-
logical indices are used to represent graph structures numerically. In this study, Sombor index
of the prime ideal sum graph of Zn are calculated for n = pα, p2q, p2q2, p3q, pqr, where p, q and
r are distinct primes. Finally, an algorithm is presented for calculating Sombor index of prime
ideal sum graph structures for any positive n integer value in Zn.
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Additive maps having nilpotent values on prime and semiprime rings
Giovanni Scudo1
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Starting from well-known results in literature (see for istance the results contained in [1], [2]
and [3]), it is possible to study the structure of associative rings that satisfy suitable nilpotent
conditions, which involve appropriate additive maps.
The most recent results have confirmed that this line of research can be conducted using the
tools of functional identities.
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Periodic Values of Generalized Skew Derivations in Prime Rings
Milena Andaloro1
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Let R be an associative ring. Several papers in literature are devoted to the study of an additive
map F : R −→ R satisfying the relation F (x)n = F (x), for all x in a suitable subset S of R
(we refer to [1-7]). After recalling some classical results relating to this research area, we will
present some new and recent ones. In particular, we will provide a detailed description of the
structure of a prime ring R, in the case F is a generalized skew derivation of R.
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Idealization of Γ-Modules and Its Properties
Shadi Shaqaqha
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The concept of idealization, introduced by Nagata, extends a ring by incorporating a module
as an ideal, enriching the underlying algebraic structure. In this work, we extend this construc-
tion to Γ-rings by introducing the idealization process for Γ-modules. We establish fundamental
properties of the idealization RoM , proving that it inherits the structure of a Γ-ring while pre-
serving the module’s identity as a Γ-ideal. Furthermore, we investigate conditions under which
the idealization retains essential algebraic properties such as commutativity and the existence
of identity elements. The interaction between Γ-ideals and Γ-submodules in this framework
is analyzed, providing structural insights into their behavior under idealization. Our results
offer a new perspective on extending classical idealization techniques to the broader setting of
Γ-rings, with potential implications for graded and nonassociative algebraic structures.
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On a result on b-generalized derivations of prime rings
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The characterization of additive mappings defined on rings has long been a subject of interest
for distinguished researchers. As well known by many working in this field, when studying
rings satisfying identities involving additive mappings, the primary objective is to determine
the structure of the map. In cases where this is not possible, the focus shifts to deriving
certain structural conclusions about the ring itself. Numerous studies on derivations have
been extended to generalized derivations, and research on generalized derivations has further
expanded to generalized skew derivations and b-generalized derivations. In these studies on
rings with identities, the techniques from the theory of rings with (generalized) polynomial
identities serve as the primary methods leading researchers to their conclusions.([1],[2],[3],[4])
Definition: Let R be a ring and Qmr(R) be its right maksimal ring of quotients and d : R→
Qmr(R) be an additive map. An additive map F : R → Qmr(R) is called a b-generalized
derivation with the associated map d, if F (xy) = F (x)y + bxd(y) for all x, y ∈ R. ([5])
In light of all these motivations, the study conducted by Pandey in [6] on generalized derivations
has been extended to b-generalized derivations.
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Sombor Energy of the Zero Divisor Graph for the Ring of Integer
Modulo pq
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Abstract
The Sombor energy of a graph was introduced in 2021. It is defined as the total sum of the
absolute values of the eigenvalues of the Sombor matrix associated to a graph. The diagonal
entries of the Sombor matrix are zero, and for any two adjacent vertices in the graph, the
corresponding matrix entry depends on their degrees. If two vertices are not adjacent, their
matrix entry is zero. Additionally, the zero divisor graph of a commutative ring is a graph
that consists of nonzero zero divisors of the ring as the set of vertices, where two vertices are
adjacent if and only if their product is zero and they commute. In this paper, the Sombor
energy of the zero divisor graph for the ring of the integer modulo pq is computed and a general
formula of the Sombor energy is established.
Keywords: Sombor matrix, Sombor polynomial, Sombor energy, zero divisor graph.

Introduction
The concept of energy was initially introduced by Gutman [1], where it is calculated as the
total of all positive eigenvalues derived from the adjacency matrix, representing the graph’s
spectrum [1]. This notion was inspired by the Hückel Molecular Orbital (HMO) Theory of the
1930s, which estimates the energies of π-electron orbitals in conjugated hydrocarbon molecules.
Recently, Gutman [2] proposed a new topological index in chemical graph theory, known as the
Sombor index, based on vertex degrees. Building on this foundation, Gowtham and Narasimha
[3] further defined Sombor energy, a new type of graph energy, and introduced the Sombor
matrix as a representation of the graphs.
Subsequently, many researchers have explored and expanded the concept of Sombor energy. For
instance, Singh and Patekar [4] derived a general formula for the Sombor index of m-splitting
and m-shadow graphs and determined the relationship between energy and Sombor energy for
m-splitting and m-shadow graphs of k-regular graphs.
Meanwhile, the idea of zero divisor graph was introduced by Beck [5] where the study focuses
on colorings of commutative rings. From Beck’s work, Anderson and Livingston [6] then found
a slightly altered definition of the zero divisor graph of commutative rings. Later, Magi et al
[7] in 2020 investigated the characteristic polynomial and generalizes methods for determining
the spectrum of zero divisor graphs and Semil et al [8] generalized the formula of first Zagreb
index of the zero divisor graph for the commutative ring, Zpk .
This paper focuses on Sombor energy of zero divisor graph for the commutative ring of integer
modulo pq. The first section of this paper is an introduction, followed by Preliminaries where
some basic concepts and definitions on ring theory, graph theory and energy are stated. In the
last section, the main results of the Sombor energy of zero divisor graph for the ring integer
modulo pq are presented.

Preliminaries
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In this section, the definitions and the basic ideas of energy, graph theory, and ring theory are
presented. The following definition states the concept of a zero divisor graph within the context
of ring theory.

Definition 1 [6] Zero Divisor Graph of Commutative Rings
Let Γ(Z(R)) represent the zero divisor graph of a commutative ring R. The vertices of the
graph are the nonzero zero divisors of R, and two vertices a and b are connected if and only if
ab = ba = 0.

Definition 2 [2] Sombor Index
Let Γ be the simple undirected graph with a vertex set V (Γ) and edge set E(Γ). The Sombor
index of Γ denoted by SI(Γ), is defined as

SI(Γ) =
∑

eij∈E(Γ)

√
deg(vi)2 + deg(vj)2

where deg(vi) and deg(vj) denotes the degree of the vertices vi and vj respectively and eij is
the edge connecting vi and vj in Γ.

Based on the definition of the Sombor index, a corresponding matrix representation, known
as the Sombor matrix, was developed. For each pair of adjacent vertices, the corresponding
matrix entry is defined using the Sombor index formula

√
deg(vi)2 + deg(vj)2, while entries for

non-adjacent vertices are zero. The Sombor matrix is formally defined as follows.

Definition 3 [3] Sombor Matrix
The Sombor matrix of a graph Γ, SO(Γ), with vertex set, V (Γ), and edge set, E(Γ), is defined
such that SOii = 0, SOij =

√
deg(vi)2 + deg(vj)2 if vertices vi and vj are adjacent, and

SOij = 0 otherwise, where deg(vi) and deg(vj) are the degrees of vertices vi and vj respectively.

Definition 4 [3] Sombor Energy of a Graph
For a given Γ, the Sombor matrix SO(Γ) is a real symmetric matrix, which means all the
eigenvalues of this matrix are real numbers. These eigenvalues can be ordered from largest to
smallest as λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn where n denotes the total the total number of eigenvalues.
The Sombor energy, SE(Γ), of the graph is then defined as the total sum of the absolute values
of these eigenvalues:

SE(Γ) =
∑n

i=1 |λi|.

Main Results
In this section, the Sombor energy of zero divisor graph for the ring of integer modulo pq where
p, q are primes and p 6= q are shown in the main theorems.

Theorem 1 Let Γ be the zero divisor graph of the commutative ring Zpq. Then, the Som-
bor eigenvalues of Γ(Zpq) are 0 with multiplicity q − 1,

√
2(q − 1)[(p− 1)2 + (q − 1)2], and

−
√

2(q − 1)[(p− 1)2 + (q − 1)2] where p, q are primes and p 6= q.

Theorem 2 Let Γ be the zero divisor graph for commutative ring Zpq. The Sombor energy of
Γ(Zpq) is SE(Γ) = 2

√
2(q − 1)[(p− 1)2 + (q − 1)2] where p, q are primes and p 6= q.

Conclusions
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In this paper, the generalization of the Sombor energy of zero divisor graph for the ring of
integer modulo pq is determined. The general formulas found demonstrates its adaptability in
exploring algebraic structures, with potential applications extending to molecular chemistry,
as Sombor energy has been proven useful in modeling thermo dynamic properties of molecular
graphs [9]. Moreover, other types of energies, such as Seidel energy, distance energy, or signless
Laplacian energy of the zero divisor graph for some commutative rings, can be determined for
future studies.
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Let R be a finite ring with identity. The clean graph Cl(R) of a ring R is a graph whose vertices
are of the form (e, u), where e is an idempotent element and u is a unit of R. Two distinct ver-
tices (e, u) and (f, v) are adjacent if and only if ef = fe = 0 or uv = vu = 1. The graph Cl2(R)
is the subgraph of Cl(R) induced by the set {(e, u) : e is a nonzero idempotent element of R}.
In this study, we examine the Zagreb and Randić topological indices of clean graphs Cl2(Zn).
We also present the condition such that two clean graph over direct product two ring are
isomorphic.
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Concept of D-Sets infinite groups has been widely studied, particularly in determining their
minimal size based on the structure of involutions and inverse pairs. However, extending
this concept to infinite groups introduces significant challenges. This research investigates the
existence of infinite minimal D-Sets in infinite groups. We prove that such a set exists if and
only if the group has infinite number of involutions, is locally finite, and contains a finite subset
with a closed invers relation. Furthermore, we introduce the notion of locally finite D-Sets
to generalize the theory of D-Sets in infinite groups. To illustrate our findings, we provide
examples including the integer orthogonal group. These results extend classical properties
of D-sets and offer new insights into their behavior within infinite groups, especially under
finiteness conditions.
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The main purpose of this paper is to investigate the structure of symmetric reverse n-derivations
that satisfying some functional identities (FIs) in the setting of semiprime rings and algebras
(cf. [2-5] for details). The study examines whether these derivations impose new constraints,
lead to triviality, or contribute to additional algebraic structure. The findings aim to enhance
the understanding of functional identities involving semiprime rings.
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ABSTRACT
In this paper, we investigate the structure of Hermitian elements in prime rings with involution
*, characterized by specific commutativity conditions involving derivations. We establish that
these elements are either central or have squares that belong to the center. Additionally, we
extend these results to skew-Hermitian elements, demonstrating similar centrality properties.
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Let N be the set of non-negative integers. A numerical semigroup S is a subset of N that is
closed under addition, contains zero, and has finite complement in N. If n1, . . . , ne are positive
integers with gcd(n1, . . . , ne) = 1, then the set 〈n1, . . . , ne〉 = {a1n1+· · ·+aene | a1, . . . , ae ∈ N}
is a numerical semigroup, and every numerical semigroup is of this form.
Numerical semigroups play a significant role in commutative algebra and algebraic geometry.
Let S = 〈n1, . . . , ne〉 be a numerical semigroup and K be a field. Let R = K[xn1 , . . . , xne ] be K-
algebra of polynomials xn1 , . . . , xne . The ring R is the coordinate ring of the curve parametrized
by xn1 , . . . , xne and and information from R can be derived from the properties of S. In this
regard, one of the most important results is by Kunz stating that R is a Gorenstein ring if and
only if S is a symmetric numerical semigroup.
A Young diagram is a series of left aligned rows of unit boxes such that the number of boxes
in each row is not less than the number of boxes in the row immediately below it. Numerical
semigroups can be visualised with Young diagrams, i.e one can always draw a unique Young
diagram for a given numerical semigroup.
Symmetric numerical semigroups is one of the main classes amongst the others. They are
known as irreducible in the usual sense. That is, a symmetric numerical semigroup can not be
written as an intersection of some other numerical semigroups containing it. In this talk, we
will introduce a method for decomposing a symmetric numerical semigroup into a numerical
semigroup containing it and its dual using the corresponding Young diagrams.
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A Frobenius Ring-based Signature Scheme through Constacyclic
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In this work, we study an example of post-quantum code-based signature schemes, namely the
Linear Equivalence Signature Scheme (LESS). Then, we investigate how we could adapt this
scheme to operate over the Frobenius ring R = Fq + uFq + vFq + uvFq, where u2 = u, v2 = v,
and uv = vu, while relying on constacyclic codes for which we explore their interaction with
the present modified version of the Linear Code Equivalence (LCE) problem. Finally, we show
how our results could be beneficial in understanding some key elements for the development of
a robust ring-based post-quantum signature scheme.
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We aim from this work to discuss the properties of isogenies after first revisiting some Hartshorne
theorems. In fact, some aspects of ring homomorphisms in the context of elliptic curves have
not been sufficiently studied because with the testimony of specialists in algebraic geometry,
they are not that easy to prove. Finally, we provide practical examples of our approach while
presenting promising applications of isogenies.
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In this paper, we study an attack against a new hashing model through the introduction of the
Gröbner basis. The hashing process here relies on our generalized Grendel-based hashing which
incorporates modified Legendre symbols Lpq. In fact, the algebraic properties of our method
helps to improve preimage and collision resistance. As for the practical part of our work, we
provide an example of our Gröbner-based attack and we analyze its complexity. Finally, we
show the possible contribution of our approach to blockchainsignatures.
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Monomial ideal plays an important role in combinatorial commutative algebra. In commutative
Noetherian ring R, the associated primes are connected to the primary decomposition of ideals.
All monomial ideals need not to hold the persistence property and strong persistence property.
There are some known classes of monomial ideals that satisfy the strong persistence property.
These classes are edge ideals of a simple graph, edge ideals of a graph with loops, vertex cover
ideal of perfect graphs, vertex cover ideals of cycle graphs of odd orders, vertex cover ideal of
wheel graphs of even orders, all square-free monomial ideals in R with n ≤ 4, irreducible ideal
and every normally torsion-free square-free monomial ideals. In a polynomial ring R, persistence
property, strong persistence property, and stable set of associated primes of different classes of
monomial ideals will be discussed.
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The present study discusses the essentials of the reduction of the lattice basis and the possible
development of methods that could serve to devise analogous versions of the Lenstra-Lenstra-
Lovász (LLL) and the Abdelalim-Elmouki (AE) algorithms. Then, we state and prove results on
properties of the lattice reduced basis while relying on new algorithmic approaches that intro-
duce Householder and Givens orthogonalization procedures. Finally, we present our numerical
results and provide examples of applications.
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The Köethe conjecture, originally proposed by Gottfried Köethe in 1930, asserts that in any
ring, the sum of a nilpotent subring and a nil subring is itself nil. This conjecture has been
verified for several important classes of rings, such as all right Noetherian rings and quasi
2-primal rings. In this paper, we focus on 2-primal rings, weakly 2-primal rings, and quasi
2-primal rings as central objects of study. We introduce the notion of a quasi reduced ring,
which generalizes the concept of a reduced ring, and demonstrate that quasi reduced rings also
satisfy the Köethe conjecture.
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In the minds of undergraduate students of the Department of Mathematics, the most important
question mark regarding mathematics is where they will encounter the theoretical knowledge
given to them in their real lives and how they will use it. On the other hand, although they
know that the teachings of each sub-branch of mathematics form the basis for innovations in the
fields of science, engineering, health, etc., due to the limitations of the department curriculum
in terms of application, they cannot go beyond remaining in their minds as a sentence form
only. For example, the differential equation of blood circulation in the veins was determined
with the mathematical modeling constructed by Euler. Thanks to other models established
in light of this, the way for developments in the diagnosis of heart, kidney, pancreas and ear
diseases has been paved.
In this presentation (supported by TUBITAK 2209-A /2024-I), the axioms that enable the con-
struction of the Primal Codon Group and the ring structure, which were created by algebraic
modeling, will be examined. Thus, the contributions of a theoretically based algebraic struc-
ture to practice in a discipline such as molecular biology will be learned. These findings may
open new corridors of study regarding the research on which other studies the modeling done
specifically for Algebra has been used and can be used in other disciplines. Most importantly,
the awareness of the students who encounter applied examples of mathematical modeling that
mathematics is not confined to theoretical castles and that each piece of information has the
potential to shed light on an innovative idea in the applied field will develop.
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Recently, a novel class of topological molecular descriptors, referred to as the Sombor index
and centered on degrees, has emerged. This index has rapidly gained recognition among its
topological counterparts, especially with the pre-exiasting popularity of exponential topological
índices. Within the study, we introduce concept of the exponential Sombor index and delve into
the identification of extremal graphs. Additionally, we obtain the exponential sombor index
values of some algebraic graphs depending on the parameters of their graphs.
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